A general relationship links gait mechanics and running ground reaction forces.

نویسندگان

  • Kenneth P Clark
  • Laurence J Ryan
  • Peter G Weyand
چکیده

The relationship between gait mechanics and running ground reaction forces is widely regarded as complex. This viewpoint has evolved primarily via efforts to explain the rising edge of vertical force-time waveforms observed during slow human running. Existing theoretical models do provide good rising-edge fits, but require more than a dozen input variables to sum the force contributions of four or more vague components of the body's total mass (mb). Here, we hypothesized that the force contributions of two discrete body mass components are sufficient to account for vertical ground reaction force-time waveform patterns in full (stance foot and shank, m1=0.08mb; remaining mass, m2=0.92mb). We tested this hypothesis directly by acquiring simultaneous limb motion and ground reaction force data across a broad range of running speeds (3.0-11.1 m s-1) from 42 subjects who differed in body mass (range: 43-105 kg) and foot-strike mechanics. Predicted waveforms were generated from our two-mass model using body mass and three stride-specific measures: contact time, aerial time and lower limb vertical acceleration during impact. Measured waveforms (N=500) differed in shape and varied by more than twofold in amplitude and duration. Nonetheless, the overall agreement between the 500 measured waveforms and those generated independently by the model approached unity (R2=0.95±0.04, mean±s.d.), with minimal variation across the slow, medium and fast running speeds tested (ΔR2≤0.04), and between rear-foot (R2=0.94±0.04, N=177) versus fore-foot (R2=0.95±0.04, N=323) strike mechanics. We conclude that the motion of two anatomically discrete components of the body's mass is sufficient to explain the vertical ground reaction force-time waveform patterns observed during human running.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait ground reaction force characteristics in children with and without forward head posture

Background: Forward head posture is one of the most prevalent abnormal postures in patients with neck disorders. The aim of this study was to evaluate the effects of forward head posture on gait ground reaction force characteristics in children. Methods: Twelve children with forward head posture (age: 11.8±1.3 years) and sixteen healthy control children (...

متن کامل

Effects of Backward Gait Training on Ground Reaction Forces in Patients with Medial Knee Osteoarthritis

introduction: The aim of this study was to investigate the effects of backward gait training protocol on ground reaction forces in Patients with medial knee Osteoarthritis. Methods: This quasi-experimental study was performed with a pretest-posttest design in two groups of healthy and unhealthy and the experimental group (participants with medial knee osteoarthritis). The participants were 21 ...

متن کامل

The Effects of Changing Footstrike Pattern on the Amplitude and Frequency Spectrum of Ground Reaction Forces During Running in Individuals With Pronated Feet

Background: The current study aimed to evaluate the effects of barefoot and shod running with two different styles on ground reaction force-frequency content in recreational runners with low arched feet. Methods: The statistical sample of this research was 13 males with PF (mean±SD age: 26.2±2.8 y; height: 176.1±8.4 cm; weight: 78.3±14.3 kg). A force plate (Bertec, USA) with a sample rate of 1...

متن کامل

Effects of Gait Speed of Femoroacetabular Joint Forces

Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying sp...

متن کامل

Ground reaction forces and center of mass mechanics of bipedal capuchin monkeys: implications for the evolution of human bipedalism.

Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four-legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 220 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2017